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Abstract.  

To assist effective and precise diagnosis for mild cognitive impairment(MCI) and 

Alzheimer's disease(AD),Electroencephalograph(EEG) has been widely used in 

clinical research of patients with AD at MCI state. To study the linear and non-

linear abnormality of EEG in AD and MCI patients, multiple characteristics was 

applied to distinguish AD and MCI patients from the normal controls(NC). EEG 

signals was recorded from 28 subjects, including 10 AD patients, 8 MCI subjects 

and 10 healthy elderly people. EEG signals in all channels was computed by auto-

regressive model and multi scale entropy(MSE) to obtain relative power spectral 

density (PSD) value of each frequency band and entropy value in different time 

scales. Area under Receiver operating characteristic curve (AUC) was used to 

compare the classification ability of the two method. The ratio Alpha/theta of 

MCI group in left frontal area can distinguish MCI from NC subjects. Also the 

long scale entropy value in left frontal-central area manifests a better accuracy in 

distinguish AD and MCI from NC group. In addition, the combined feature from 

alpha/theta and long scale entropy in the left frontal central area can discriminate 

AD from NC group with higher AUC reaching 0.89. This indicated that combined 

PSD and MSE can be taken as a potential measure to detect AD in early state.   

Keywords: Nonlinear, Multi-scale Entropy, Alzheimer’s Disease, Mild cogni-

tive impairment. 

1 Introduction 

Alzheimer’s disease is a degenerative diseases of the central nervous increasingly af-

fects the elderly people, causing loss in cognition, memory, even language function 

[1].About 10-15% of MCI elderly people each year developed into AD, effective diag-

nosis and treatment for MCI is very important [2]. The clinical detection of MCI and 

AD is mainly based on subjective neuropsychological test [3]. The imaging method 

was used to study the brain structure changes of MCI and AD, but its specificity is not 

high in the early stage of AD [4]. Also the detection based on biomarkers is invasive 

IUPESM2018, 072, v6 (final): ’Quantitative EEG in Mild Cognitive Impairment and Alz� . . . 1



2 

[5]. EEG can reflect the physiological activities of the brain, and because of its low-

cost, non-invasive and high time resolution, it has been widely used in clinical research 

of patients with AD at the MCI stage [6].  

Quantitative EEG recordings in rest state provide an ideal methodology of the rapid 

detection in MCI and AD [7]. Babiloni et al [8] presented the hippocampus volume is 

related to the loss of alpha rhythms in AD. Moretti et al [9] found the alpha relative 

power of MCI in the frontal area was decreased, and power in theta band was increased. 

Compared with traditional spectrum estimation, the parameter estimation based on AR 

model performs better, it has been used to calculate PSD of EEG in MCI studies [10].   

Although linear analysis is important to quantify the abnormal EEG rhythm of patients 

with MCI or AD, considering the non-stationarity and randomicity of EEG signal, com-

plexity measures such as entropy were widely used to analysis EEG in AD patients. 

Abasolo et al [11] showed the entropy of AD patients in the parietal area is lower than 

health elderly. Hogan et al [12] found that the entropy of MCI subjects was reduced. 

MSE analysis base on entropy can measure the probability of producing new infor-

mation for sequences under different scales size, it has been used in cognitive neuro-

science. Mizuno et al [13] found large scale entropy of AD patients in whole brain areas 

was higher than healthy elderly. Previous studies suggested the complexity changing 

of EEG signals related to cognitive impairment may be inconsistent in different time 

scales.    

In this work to further quantify both linear and nonlinear comprehensive abnormality 

of EEG in MCI and AD patients, the PSD and MSE method was adopted to analysis 

the MCI, AD and normal elderly. Then we compared the accuracy of PSD value, MSE 

value and combined index in distinguishing AD and MCI from healthy elderly.    

2 Subject and Experiment 

2.1 Participants 

Ten hospitalized AD patients from the department of neurology, JiangBin Hospital in 

NanNing, GuangXi province (China), and 18 volunteers over 60 years old were re-

cruited. All subjects were right-handness, after clinical evaluation and neurological ex-

aminations, eight subjects whose MMSE score were ranged from 24 to 27 composed to 

be MCI group, other subjects composed to be NC group. Table 1. gives the information 

of subjects. ‘*’ means difference of MMSE in three groups was significant. The differ-

ence in age, gender and education level are not significant. 

Table 1. Information of Subjects 

Heading level NC(N=10) MCI (N=8) AD(N=10) ANOVA P 

Sex(female/male) 6/4 4/4 4/6 0.38 

Age (years) 74.4±9.6 79.1±8.7 80.6±6.7 0.25 

Education(years) 8.5±2.1 8.5±1.4 8.0±0.1 0.69 

MMSE 28.9±1.2 24.6±0.7 16.9±1.5 0.00 * 
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2.2 EEG recording  

The data collected by the NicoletOne EEG acquisition instrument with 16 channels, 

sampling rate is 250Hz. During the experiment the electrode impedance was kept under 

in 5KΩ, acquisition channel concludes Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, 

F8, T3, T4, T5, T6. Five minutes EEG signal was collected in rest state with eyes 

closed. Five segment of 5 seconds which has no obvious interference in all channels 

was selected for subsequent processing. EEG signal was preprocessed by 0.05–40Hz 

band pass filter, all data was processed in MATLAB (R2012a). 

3 Method 

3.1 Power spectrum density (PSD) 

PSD analysis for each segment is estimated using AR Burg method, which is one of the 

most frequently used parametric method. AR model is based on modeling the data se-

quence as the output of a causal and discrete filter whose input is white noise. Thus the 

AR model of order p is expressed by the difference equation. AR parameters was esti-

mated by the Burg algorithm, and the optimal order of AR model was estimated by the 

final prediction error criterion (FPE). The PSD in each frequency band was normalized 

to obtain the relative PSD, where the sub-band was selected as delta band in 0.5-4Hz, 

theta band in 4-8Hz, alpha band in 8-13Hz and beta band in 13-30Hz. And alpha/theta 

which shows the ratio of PSD in alpha band versus theta band was computed. 

3.2 Multi-scale entropy  (MSE) 

MSE is a method which measure the complexity of a finite length time series to quantify 

the probability of generating new information on different time scales. MSE method 

based on sample entropy  of different scales was calculated as the following steps[13]: 

Firstly, for EEG time series X, construct  a coarse-grained time series Y according to a 

scale factor, the length of reconstruction time series is M, in this work set m=2 to get 

the new time series Ym. Secondly, quantify the sample entropy of each coarse-grained 

time series, the distance between each Ym was computed. Set a threshold, r=0.25, the 

number of the distance less than r was calculated as B, then obtain the average ratio of 

this number to the total number of vectors. Lastly, for the next number of dimensions 

m+1, repeat the above steps to obtain the sample entropy of each scale from 1 to 20.  

3.3 Statistical analysis 

Comparison between groups (NC and MCI, MCI and AD, NC and AD) was made using 

the independent samples T-test. ROC curves was used to estimate the discriminating 

ability of PSD and MSE.  Area under curve (AUC) of ROC near the upper left corner 

indicate diagnostic capabilities. Statistical procedures was performed using SPSS 19.0. 
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4 Results 

4.1 MSE in different scales  

The sample entropy value on 1 to 20 scales in each channel of AD, MCI and NC group 

was shown in “Fig. 1”. For each scale we compared the difference between AD and NC 

group. The red box indicated that within this range of scales, differences was statisti-

cally significant between AD and NC group. The long scale entropy of AD group was 

greater than MCI group, and the value of MCI group was greater than NC group, espe-

cially for scales more than 12, there was significant differences in each channel of the 

left side brain areas.  

 

Fig. 1. MSE in different scales of different channel 

The average entropy from 13 to 20 were computed as the long scale entropy value. The 

“Fig. 2” shows the long scale entropy in left frontal, left occipital, left parietal occipital, 

left temporal, right frontal, right occipital, right occipital area and right temporal areas, 

differences between AD and NC group were analyzed by t test. The long scale entropy 

value of AD group was greater than MCI group, and the value of MCI was greater than 

NC group. Especially the difference between AD and NC group in the left frontal, left 

frontal-central and left parietal-occipital areas was significant. 
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Fig. 2. Alpha/Theta in different areas 

4.2 PSD in different band  

The average PSD value of different frequency band in each channel of the three group 

was shown Table 2, ‘*’ means difference between AD and NC group was significant, 
and ‘+’ means difference between AD and MCI group was significant. 

Table 2. PSD index of different frequency band 

For Alpha/Theta, difference between groups on left and right side of four brain areas 

were also analyzed by t test. As shown in “Fig.3”, the line means p<0.05, the difference 

was significant. There was significant difference of the alpha/theta value in left frontal, 

left temporal, right temporal and right parietal occipital areas. There was significant 

difference of the alpha/theta value in left frontal area of MCI and NC group. And there 

was significant difference of the alpha/theta value in right parietal occipital area of MCI 

and AD group. 

 

Fig. 3. Long-scale entropy in different areas 

 β α θ δ (β+α)/(θ+δ) α/θ 

NC 0.18±0.03 0.41±0.05 0.24±0.02 0.16±0.04 0.72±0.34 2.91±0.33 

MCI 0.15±0.02* 0.40±0.06 0.28±0.02* 0.16±0.05 0.60±0.33* 2.13±0.31* 

AD 0.12±0.01*+ 0.33±0.05*+ 0.37±0.02*+ 0.19±0.06*+ 0.28±0.16*+ 0.95±0.12*+ 

IUPESM2018, 072, v6 (final): ’Quantitative EEG in Mild Cognitive Impairment and Alz� . . . 5



6 

4.3 ROC analysis 

AUC was used to assess the ability of index in discriminating AD and MCI from NC 

group, the AUC of alpha/theta and long scale entropy in eight areas was computed, as 

Table 3 shows, * means AUC is more than 0.7. The results indicated that the two in-

dexes in left frontal-central and occipito-parietal areas has certain accuracy in discrim-

inating AD from NC group. AUC of linear and nonlinear index in the Left Frontal-

Central area was all more than 0.7, with 0.75 and 0.81. We further combined those two 

value in left frontal-central area to distinguish AD from NC group, the AUC of com-

bined index reached 0.89, which is higher than AUC from any single feature.   

 Table 3. AUC of Alpha/Theta and long scale entropy  

5 Discussion 

In this study, linear and non-linear method, PSD and MSE analysis was employed to 

distinguish MCI and AD patients from normal elderly. Cognitive impairment is related 

to the spontaneous EEG activity rhythm, the abnormality of all the PSD index in MCI 

and AD patient was consistent with the prior studies. The significant declined power of 

alpha band in AD patients was indicated, and these values of MCI subjects also has a 

downward trend compared with normal elderly. The alpha/theta ratio in left frontal and 

right occipito-parietal areas can be a typical feature of cognitive decline, which dis-

criminated MCI from normal elderly significantly.  

For MSE analysis, we determined the appropriate range of scale to obtain long scale 

entropy value, the complexity abnormality of MCI patients was consistent with prior 

studies. The long scale entropy in left frontal-central and ccipito-parietal areas provided 

better classification performance between AD patient and normal elderly. And in left 

frontal-central area it also provided good classification performance between the MCI 

and NC. This manifests EEG abnormality in dominant side brain areas of AD patients 

is more notable. The complexity of EEG from MSE analysis can provide more infor-

mation which may benefit our understanding of cognitive impairment.   

Since the brain is a complex system showing both linear and nonlinear features, com-

bining PSD and MSE which can reflect the rhythmicity as well as complexity, to obtain 

effective multiple quantitative EEG index in rest state, can be taken as a potential meas-

ure in early screen of AD. 

Brain areas 

AUC of Alpha/Theta AUC of Long Scale Entropy 

AD and NC MCI and NC AD and NC MCI and NC 

L-Frontal 0.61 0.76* 0.77* 0.55 

R-Frontal 0.68 0.56 0.80 0.54 

L-FrontalCentral 0.75* 0.48 0.81* 0.73* 

R-FrontalCentral 0.59 0.58 0.68 0.61 

L-Temporal 0.56 0.69 0.65 0.58 

R-Temporal 0.65 0.58 0.63 0.65 

LOccipitoparietal 0.86* 0.55 0.74* 0.69 

ROccipitoparietal 0.79* 0.74* 0.67 0.69 
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Abstract.  

To assist effective and precise diagnosis for mild cognitive impairment(MCI) and 

Alzheimer's disease(AD),Electroencephalograph(EEG) has been widely used in 

clinical research of patients with AD at MCI state. To study the linear and non-

linear abnormality of EEG in AD and MCI patients, multiple characteristics was 

applied to distinguish AD and MCI patients from the normal controls(NC). EEG 

signals was recorded from 28 subjects, including 10 AD patients, 8 MCI subjects 

and 10 healthy elderly people. EEG signals in all channels was computed by auto-

regressive model and multi scale entropy(MSE) to obtain relative power spectral 

density (PSD) value of each frequency band and entropy value in different time 

scales. Area under Receiver operating characteristic curve (AUC) was used to 

compare the classification ability of the two method. The ratio Alpha/theta of 

MCI group in left frontal area can distinguish MCI from NC subjects. Also the 

long scale entropy value in left frontal-central area manifests a better accuracy in 

distinguish AD and MCI from NC group. In addition, the combined feature from 

alpha/theta and long scale entropy in the left frontal central area can discriminate 

AD from NC group with higher AUC reaching 0.89. This indicated that combined 

PSD and MSE can be taken as a potential measure to detect AD in early state.   

Keywords: Nonlinear, Multi-scale Entropy, Alzheimer’s Disease, Mild cogni-

tive impairment. 

1 Introduction 

Alzheimer’s disease is a degenerative diseases of the central nervous increasingly af-

fects the elderly people, causing loss in cognition, memory, even language function 

[1].About 10-15% of MCI elderly people each year developed into AD, effective diag-

nosis and treatment for MCI is very important [2]. The clinical detection of MCI and 

AD is mainly based on subjective neuropsychological test [3]. The imaging method 

was used to study the brain structure changes of MCI and AD, but its specificity is not 

high in the early stage of AD [4]. Also the detection based on biomarkers is invasive 
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[5]. EEG can reflect the physiological activities of the brain, and because of its low-

cost, non-invasive and high time resolution, it has been widely used in clinical research 

of patients with AD at the MCI stage [6].  

Quantitative EEG recordings in rest state provide an ideal methodology of the rapid 

detection in MCI and AD [7]. Babiloni et al [8] presented the hippocampus volume is 

related to the loss of alpha rhythms in AD. Moretti et al [9] found the alpha relative 

power of MCI in the frontal area was decreased, and power in theta band was increased. 

Compared with traditional spectrum estimation, the parameter estimation based on AR 

model performs better, it has been used to calculate PSD of EEG in MCI studies [10].   

Although linear analysis is important to quantify the abnormal EEG rhythm of patients 

with MCI or AD, considering the non-stationarity and randomicity of EEG signal, com-

plexity measures such as entropy were widely used to analysis EEG in AD patients. 

Abasolo et al [11] showed the entropy of AD patients in the parietal area is lower than 

health elderly. Hogan et al [12] found that the entropy of MCI subjects was reduced. 

MSE analysis base on entropy can measure the probability of producing new infor-

mation for sequences under different scales size, it has been used in cognitive neuro-

science. Mizuno et al [13] found large scale entropy of AD patients in whole brain areas 

was higher than healthy elderly. Previous studies suggested the complexity changing 

of EEG signals related to cognitive impairment may be inconsistent in different time 

scales.    

In this work to further quantify both linear and nonlinear comprehensive abnormality 

of EEG in MCI and AD patients, the PSD and MSE method was adopted to analysis 

the MCI, AD and normal elderly. Then we compared the accuracy of PSD value, MSE 

value and combined index in distinguishing AD and MCI from healthy elderly.    

2 Subject and Experiment 

2.1 Participants 

Ten hospitalized AD patients from the department of neurology, JiangBin Hospital in 

NanNing, GuangXi province (China), and 18 volunteers over 60 years old were re-

cruited. All subjects were right-handness, after clinical evaluation and neurological ex-

aminations, eight subjects whose MMSE score were ranged from 24 to 27 composed to 

be MCI group, other subjects composed to be NC group. Table 1. gives the information 

of subjects. ‘*’ means difference of MMSE in three groups was significant. The differ-

ence in age, gender and education level are not significant. 

Table 1. Information of Subjects 

Heading level NC(N=10) MCI (N=8) AD(N=10) ANOVA P 

Sex(female/male) 6/4 4/4 4/6 0.38 

Age (years) 74.4±9.6 79.1±8.7 80.6±6.7 0.25 

Education(years) 8.5±2.1 8.5±1.4 8.0±0.1 0.69 

MMSE 28.9±1.2 24.6±0.7 16.9±1.5 0.00 * 
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2.2 EEG recording  

The data collected by the NicoletOne EEG acquisition instrument with 16 channels, 

sampling rate is 250Hz. During the experiment the electrode impedance was kept under 

in 5KΩ, acquisition channel concludes Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, 

F8, T3, T4, T5, T6. Five minutes EEG signal was collected in rest state with eyes 

closed. Five segment of 5 seconds which has no obvious interference in all channels 

was selected for subsequent processing. EEG signal was preprocessed by 0.05–40Hz 

band pass filter, all data was processed in MATLAB (R2012a). 

3 Method 

3.1 Power spectrum density (PSD) 

PSD analysis for each segment is estimated using AR Burg method, which is one of the 

most frequently used parametric method. AR model is based on modeling the data se-

quence as the output of a causal and discrete filter whose input is white noise. Thus the 

AR model of order p is expressed by the difference equation. AR parameters was esti-

mated by the Burg algorithm, and the optimal order of AR model was estimated by the 

final prediction error criterion (FPE). The PSD in each frequency band was normalized 

to obtain the relative PSD, where the sub-band was selected as delta band in 0.5-4Hz, 

theta band in 4-8Hz, alpha band in 8-13Hz and beta band in 13-30Hz. And alpha/theta 

which shows the ratio of PSD in alpha band versus theta band was computed. 

3.2 Multi-scale entropy  (MSE) 

MSE is a method which measure the complexity of a finite length time series to quantify 

the probability of generating new information on different time scales. MSE method 

based on sample entropy  of different scales was calculated as the following steps[13]: 

Firstly, for EEG time series X, construct  a coarse-grained time series Y according to a 

scale factor, the length of reconstruction time series is M, in this work set m=2 to get 

the new time series Ym. Secondly, quantify the sample entropy of each coarse-grained 

time series, the distance between each Ym was computed. Set a threshold, r=0.25, the 

number of the distance less than r was calculated as B, then obtain the average ratio of 

this number to the total number of vectors. Lastly, for the next number of dimensions 

m+1, repeat the above steps to obtain the sample entropy of each scale from 1 to 20.  

3.3 Statistical analysis 

Comparison between groups (NC and MCI, MCI and AD, NC and AD) was made using 

the independent samples T-test. ROC curves was used to estimate the discriminating 

ability of PSD and MSE.  Area under curve (AUC) of ROC near the upper left corner 

indicate diagnostic capabilities. Statistical procedures was performed using SPSS 19.0. 
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4 Results 

4.1 MSE in different scales  

The sample entropy value on 1 to 20 scales in each channel of AD, MCI and NC group 

was shown in “Fig. 1”. For each scale we compared the difference between AD and NC 

group. The red box indicated that within this range of scales, differences was statisti-

cally significant between AD and NC group. The long scale entropy of AD group was 

greater than MCI group, and the value of MCI group was greater than NC group, espe-

cially for scales more than 12, there was significant differences in each channel of the 

left side brain areas.  

 

Fig. 1. MSE in different scales of different channel 

The average entropy from 13 to 20 were computed as the long scale entropy value. The 

“Fig. 2” shows the long scale entropy in left frontal, left occipital, left parietal occipital, 

left temporal, right frontal, right occipital, right occipital area and right temporal areas, 

differences between AD and NC group were analyzed by t test. The long scale entropy 

value of AD group was greater than MCI group, and the value of MCI was greater than 

NC group. Especially the difference between AD and NC group in the left frontal, left 

frontal-central and left parietal-occipital areas was significant. 
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Fig. 2. Alpha/Theta in different areas 

4.2 PSD in different band  

The average PSD value of different frequency band in each channel of the three group 

was shown Table 2, ‘*’ means difference between AD and NC group was significant, 
and ‘+’ means difference between AD and MCI group was significant. 

Table 2. PSD index of different frequency band 

For Alpha/Theta, difference between groups on left and right side of four brain areas 

were also analyzed by t test. As shown in “Fig.3”, the line means p<0.05, the difference 

was significant. There was significant difference of the alpha/theta value in left frontal, 

left temporal, right temporal and right parietal occipital areas. There was significant 

difference of the alpha/theta value in left frontal area of MCI and NC group. And there 

was significant difference of the alpha/theta value in right parietal occipital area of MCI 

and AD group. 

 

Fig. 3. Long-scale entropy in different areas 

 β α θ δ (β+α)/(θ+δ) α/θ 

NC 0.18±0.03 0.41±0.05 0.24±0.02 0.16±0.04 0.72±0.34 2.91±0.33 

MCI 0.15±0.02* 0.40±0.06 0.28±0.02* 0.16±0.05 0.60±0.33* 2.13±0.31* 

AD 0.12±0.01*+ 0.33±0.05*+ 0.37±0.02*+ 0.19±0.06*+ 0.28±0.16*+ 0.95±0.12*+ 
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4.3 ROC analysis 

AUC was used to assess the ability of index in discriminating AD and MCI from NC 

group, the AUC of alpha/theta and long scale entropy in eight areas was computed, as 

Table 3 shows, * means AUC is more than 0.7. The results indicated that the two in-

dexes in left frontal-central and occipito-parietal areas has certain accuracy in discrim-

inating AD from NC group. AUC of linear and nonlinear index in the Left Frontal-

Central area was all more than 0.7, with 0.75 and 0.81. We further combined those two 

value in left frontal-central area to distinguish AD from NC group, the AUC of com-

bined index reached 0.89, which is higher than AUC from any single feature.   

 Table 3. AUC of Alpha/Theta and long scale entropy  

5 Discussion 

In this study, linear and non-linear method, PSD and MSE analysis was employed to 

distinguish MCI and AD patients from normal elderly. Cognitive impairment is related 

to the spontaneous EEG activity rhythm, the abnormality of all the PSD index in MCI 

and AD patient was consistent with the prior studies. The significant declined power of 

alpha band in AD patients was indicated, and these values of MCI subjects also has a 

downward trend compared with normal elderly. The alpha/theta ratio in left frontal and 

right occipito-parietal areas can be a typical feature of cognitive decline, which dis-

criminated MCI from normal elderly significantly.  

For MSE analysis, we determined the appropriate range of scale to obtain long scale 

entropy value, the complexity abnormality of MCI patients was consistent with prior 

studies. The long scale entropy in left frontal-central and ccipito-parietal areas provided 

better classification performance between AD patient and normal elderly. And in left 

frontal-central area it also provided good classification performance between the MCI 

and NC. This manifests EEG abnormality in dominant side brain areas of AD patients 

is more notable. The complexity of EEG from MSE analysis can provide more infor-

mation which may benefit our understanding of cognitive impairment.   

Since the brain is a complex system showing both linear and nonlinear features, com-

bining PSD and MSE which can reflect the rhythmicity as well as complexity, to obtain 

effective multiple quantitative EEG index in rest state, can be taken as a potential meas-

ure in early screen of AD. 

Brain areas 

AUC of Alpha/Theta AUC of Long Scale Entropy 

AD and NC MCI and NC AD and NC MCI and NC 

L-Frontal 0.61 0.76* 0.77* 0.55 

R-Frontal 0.68 0.56 0.80 0.54 

L-FrontalCentral 0.75* 0.48 0.81* 0.73* 

R-FrontalCentral 0.59 0.58 0.68 0.61 

L-Temporal 0.56 0.69 0.65 0.58 

R-Temporal 0.65 0.58 0.63 0.65 

LOccipitoparietal 0.86* 0.55 0.74* 0.69 

ROccipitoparietal 0.79* 0.74* 0.67 0.69 
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ABSTRACT 

In this study, a steady-state motion visual evoked potential 

(SSMVEP) stimulation-the square’s ring motion was proposed, and 

compared with the visual stimulation which are commonly used in 

BCI system (oscillatory Newton's ring, square flicker and circular 

flicker) both in objective and subjective aspects. Eight healthy 

subjects were asked to gaze at those four simulations. For each 

stimulation, eight targets varying at different frequencies were 

presented on a LCD screen. Canonical    Correlation Analysis (CCA) 

was used to identify SSVEPs, and subjective questionnaire was 

used to measure the comfort of the stimulations. The experimental 

results showed that the accuracy of the square’s ring motion was 

85±13.2% which has no significant difference with the oscillatory 

Newton’s ring (85.9±9.1%).  Meanwhile the accuracy of the square 

flicker was 98.1±4.38%, and the accuracy of the circular flicker was 

99.1±1.9%. The subjective questionnaire reported that the square’s 

ring motion was the most comfortable, followed by the Newton’s 

ring motion, the circular flicker and the square flicker. Taken 

together, these results suggest that the square’s ring motion 

equaling to the newton’s ring can elicit SSVEP accurately and 

reduce the discomfort caused by flickering of targets. Though there 

is no obvious improvement in the accuracy of the square’s ring 

motion compared with oscillatory Newton’s ring, subjective score 

of the square’s ring is a bit higher than the oscillatory Newton’s 

ring. Under the premise of controlling the incorrect operation, the 

square’s ring motion can be used as a visual stimulation in long-

term SSMVEP-based BCI system. 

Categories and Subject Descriptors 

H.5.2 [Information interfaces and presentation]: User Interfaces 

– evaluation/methodology, Screen design 

General Terms 

Performance, Design, Experimentation, 

Keywords 

Steady state motion visual evoked potential; Accuracy; Comfort. 

1. INTRODUCTION 
Brain computer interface (BCI) is an alternative device which 

facilitates human–machine interaction without dependence on any 

muscle or peripheral nervous system actions [1], using human 

neurophysiological signals to communicate with external device 

such as computers, wheelchairs [2] and robots [3]. BCI systems are 

most frequently based on recordings of electroencephalogram 

(EEG), because of the relatively low price and portability. BCI 

system based on the Steady State Visual Evoked Potentials 

(SSVEP) is widely used, due to its stable waveform, obvious 

spectral characteristics, and less susceptibility to blinking and 

motion artifact
错误!未找到引用源。[5][6]. SSVEP-based BCI system 

generally provide higher classification accuracy and information 

transfer rates (ITR) [7] 错误!未找到引用源。
.  

For SSVEP-based BCI system, a suitable stimulation paradigm is 

very crucial. There are three kinds of visual stimulation in 

previous studies. First, typical SSVEP is frequency coded, visual 

targets flashing at different frequencies, where a user’s choice is 

determined from the SSVEPs elicited by gazing at a specific 

target, which is limited by a variety of factors, including user 

comfort and safety with light stimuli flashing at specific 

frequencies [9].The second is phase coded SSVEP, the targets were 

flickering at the same frequency but with different phases. Phase 

coding can increase the number of available targets and 

compensate the reduction of limited frequencies [10]-[12]. If a 

comfortable frequency of stimulation is selected, visual fatigue 

can be reduced to a certain extent. Thirdly, based on extremely 

high consistency of frequency and phase observed between visual 

flickering, the classification accuracy was up to 91.04% and the 

information transmission rate was 267bits /min [13]. 

Even though SSVEP-based BCIs have high recognition accuracy, 

most stimulation is based on flicker which usually causes eyestrain   

and directly affect the BCI system long time performance 
错误!未找到引

用源。
. In order to overcome the problem of visual fatigue caused by 

uncomfortable light twinkling and contrast changes, Xie et al. 

utilized a special visual stimulation of non-direction-specific 

motion reversals, adopting the Newton’s ring as the template, to 

elicit the SSMVEPs for BCI applications 
错误!未找到引用源。

. However, 

SSMVEP-based BCI cannot achieve high accuracy as SSVEP-

based BCI. How to improve the accuracy under the condition of 

reducing visual fatigue has become the goal of researchers. 

Due to the different shapes of receptive fields in successive stages 

of information processing in the visual system, one can hypothesize 

that square stimuli would evoke better response than circular ones 
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错误!未找到引用源。
. We suspected that changing the motion pattern from 

Newton’s ring to square ring with sharper edge might increase the 

classification accuracy. In this paper, we proposed a new 

stimulation-the square’s ring motion for SSMVEP-based BCI 

system. In addition, the new stimulation was compared with the 

visual stimulation commonly used in BCI system (oscillatory 

Newton's ring, square flicker and circular flicker) both in objective 

and subjective aspects.  

2. EXPERIMENTS AND METHODS  

2.1 Stimulation 
The square’s ring stimulation is a development of Newton’s ring 

which can provide a comparable performance with low-adaptation 

characteristic and less visual discomfort for BCI applications 
错误!未

找到引用源。
. A square’s ring stimulator is made up of a series of 

concentric black and white squares. The formula is: 

E = 𝐼𝑚𝑎𝑥[（sign(cos(2 ∗ π ∗
d

𝜆
+ ∅(i) ∗

π

2
)2 − 0.5)]    (1) 

In the formula, 𝜆 is a constant, this article takes 0.05; d is a square 

matrix of 360 * 360. The ring oscillation motion is formed 

by∅(𝑖): 

∅(i) = abs(sin (𝑝𝑖 ∗
f

2
∗ (

𝑖

𝑅
)))       (i=1, 2…60)  (2) 

Where, f is the stimulus frequency; i is the current frame number; 

R = 60 for the screen refresh rate. When∅(𝑖) increases with i, its 

phase shift from 0 to π, and then expansion motion was achieved 

with phase shift from π back to 0[15]. Fig.1 shows a square’s ring 

motion reversal procedure in one stimulus period. It is illustrated 

with a 12 Hz motion reversal frequency and each reversal contained 

10 frames.  

 

What’s more, the Newton's ring motion, the square flickering and 

circular flickering were selected as control. 

Presentation of the stimulators and their reversals were coded by 

the Psychtoolbox 3.0. Acer's 24-inch LCD monitor (60Hz-screen 

refresh rate, 1920 × 1080 pixels) displayed the stimulation. For the 

each visual stimulation, there were eight targets flickering at 8, 9, 

10, 11, 12, 13, 14 and 15Hz on a black background. There were 

four kinds of visual stimulation, there were four kinds of targets, 

square’s ring motion (5.5cm in side length), Newton’s Rings 

motion (6.2cm in diameter), the square flick (5.5cm in side length) 

and the circular flick (6.2cm in diameter).  

2.2 Experimental procedure  
Eight healthy right-handed adults (3 females and 5 males), aged 

from 20 to 26, participated in this experiment. All subjects gave 

informed consent. EEG signals were sampled at 1000 Hz 

(Neuroscan, USA). Those were attached to the head locations PO3, 

PO4, PO7, PO8, POZ, O1, OZ, O2, and CZ.  All electrode impedances 

were reduced to 10kΩ before data recording. Trigger events were 

acquired simultaneously. Data were collected continuously and 

analyzed off-line. The experiment was performed in a quiet room, 

with the subjects sitting comfortably and gazing at the LCD screen 

with a distance of about 70 cm. 

 

  

For each subject, four experimental tasks with different 

stimulations were carried out. Each task contained 40 trails. Before 

the start of each trails, a red "+" symbol appears randomly at the 

location of the stimulus target for a duration of 0.5 s. Then the eight 

stimulators were simultaneously presented for 4 s as a single trial. 

Two adjacent trials were isolated by black screen and the interval 

time was fixed to 0.5 s. After 40 trails, a single task was over (see 

Figure 3). 

 

2.3 EEG data processing 
Band-passed filter between 3 and 40 Hz and digital notch filter from 

48Hz to 52Hz were used to remove artifacts and power line 

interface when acquiring EEG signals. Then the segmented EEG 

signals were superposition averaged and spectral analyzed. After 

determining four visual modes can effectively induce SSVEP, 

Canonical correlation coefficients (CCA) was implanted for off-

line target classification [19]错误!未找到引用源。
. 

 CCA is a statistical method for measuring the linear relationship 

between two sets of multivariate data. In the CCA-based SSVEP 

analysis, X=(𝑥1, 𝑥2, … 𝑥𝑛) is assigned as the set of the multi-

channel EEG signals, and 𝑌𝑓 refers to the set of reference signals 

which have the same length as X. The reference signals 𝑌𝑓is set as 

Figure 1. Square’s ring motion reversal stimulation 
 

   (A)                                        (B) 

(C)                                      (D) 
Figure 2.Stimulation interfaces (A) The square’s rings based 

interface. (B) The Newton’s rings interface. (C) The square 

based interface (D) The circle based interface. 

Figure 3. The timing of the experimental sequence 
. 
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, 𝑡 =
1

𝑓𝑠
, … ,

𝑚

𝑓𝑠
                       (3) 

Where k is the number of harmonics, which is dependent on how 

many frequency harmonics existed in SSVEP. The 𝑓𝑠  is the 

sampling rate, and m is sample points. By calculating: 

𝜌𝑖 =
𝐸(𝑊𝑥

𝑇𝑋𝑌𝑖
𝑇𝑊𝑦𝑖)

√𝐸(𝑊𝑥
𝑇𝑋𝑋𝑇𝑊𝑥)∙𝐸(𝑊𝑦𝑖

𝑇𝑌𝑖𝑌𝑖
𝑇𝑊𝑦𝑖)

                                 (4) 

By calculating correlation coefficient 𝜌𝑖  can be obtained, and i 

corresponding to the maximum is the focused target 
错误!未找到引用源。

. 

The accuracy of classification of the four stimulation was 

calculated from eight subjects. 

2.4 Subjective Evaluation 
At the end of each task, subject was asked to fill out a questionnaire 

in order to find out how comfortable they were. They had to give a 

score between 1 (not) and 7 (very) for each of the following four 

questions after gazing at each of the stimulation in turn 
错误!未找到引用

源。
:  

• How much do you like this stimulation? 

• How much will this stimulation increase your tiredness? 

• How long could you look at this stimulation? 

• How annoying is this stimulation? 

3. RESULT 

3.1 Different visual modes SSVEP spectrum 

analysis 
As for spectrum analysis of EEG signals results, one or two peaks 

were found in eliciting fundamental frequency or harmonic 

frequency. The amplitude of the spectrum peak of the square’s ring 

motion and Newton's ring motion were smaller than that of the 

square flicker and the circular flicker. Fig. 4 showed the spectrum 

amplitude of channel PO4 while S7 gazing at visual stimulations 

flickering at 14Hz. 

 

3.2 Accuracy of different visual stimulations  
Fig.5 showed the CCA classification accuracy of four kinds of 

stimulations. The result indicated that the accuracy of the 
square’s ring motion and Newton's ring were similar to each other, 

and were lower than that of the square flicker and the circular 

flicker. Double factor variance analyzed that there was a significant 

difference (p = 0.0000 ＜0.05) between motion mode and flicker 

mode, but no significant difference between square and circular 

mode (p=0.947 ＞ 0.05). In addition, there was no interaction 

between the two elements (mode and shape).  

3.3 Subjective evaluation of different visual 

stimulations 
As shown in Fig.6, the eight subjects' comfort scores of four visual 

stimulations. The order of the score from high to the end was the 

square’s ring motion, the newton’s ring motion, the circular flicker 

and the square flicker. The Square’s ring seemed to have less 

negative effect on subjects’ comfort than other three stimulations.  

 

 

 

 

4. DISCUSSION 
In this paper, a steady-state motion visual evoked potential 

(SSMVEP) stimulation-the square’s ring motion was proposed, and 

compared with the visual stimulation which are commonly used in 

BCI system (oscillatory Newton's ring, square flicker and circular 

flicker) both in objective and subjective aspects. From the 

frequency spectrum of electroencephalogram, the square’s ring 

motion can effectively induce SSVEP as same as other three 

stimulations. Similar to Newton’s ring, the amplitude of square’s 

ring motion spectrum amplitude was smaller than that of the square 

flicker and the circular flicker. 

 According to result of CCA, the accuracy of SSVEP elicited by 

motion mode is lower than that of flicker mode. Although the 

average brightness of motion mode and flicker mode was the same, 

Figure 4.SSVEP spectrum amplitude of S7 elicited by 14 Hz 
. 

Figure 5. SSVEP recognition accuracy of different 

stimulations 

Figure 6. Subjective comfort evaluation of different 

stimulations. 
 



but the change of the former was more obvious than the latter. 

There is a positive correlation between the SSVEP response and the 

change of brightness[24].Therefore, the classification algorithm had 

lower recognition correct rate in the motion mode, compared with 

the flicker mode. In the meantime, the accuracy shows that equally 

with flicker mode, shape did not significantly affect motion mode 

accuracy[25]-[26]. What’s more, we selected eight frequencies to 

compare effects of stimulation frequency on the efficiency of 

stimulation paradigms. The results demonstrated that the square’s 

ring had higher accuracy at some frequencies (8, 12, 13, 15Hz) than 

the Newton’s ring. The subjective comfort indicated that motion 

mode has higher comfort scores than the flicker mode  

As a SSVEP-BCI stimulation paradigm, motion mode can 

effectively reduce the discomfort of the subjects because of its low 

contrast stimulus, but it also causes a certain loss of accuracy. If we 

can effectively control the erroneous operation of the BCI system, 

motion mode can be used as a visual stimulation for a long term. 

Admitting that the accuracy is not significantly improved by the 

square’ ring motion   in comparison with the Newton’s ring, the 

comfort is slightly improved. Further studies will focus on the 

enhancing accuracy of the square’s ring motion and improving its 

applicability in BCI system. 
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