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Abstract.

To assist effective and precise diagnosis for mild cognitive impairment(MCI) and
Alzheimer's disease(AD),Electroencephalograph(EEG) has been widely used in
clinical research of patients with AD at MCI state. To study the linear and non-
linear abnormality of EEG in AD and MCI patients, multiple characteristics was
applied to distinguish AD and MCI patients from the normal controls(NC). EEG
signals was recorded from 28 subjects, including 10 AD patients, 8 MCI subjects
and 10 healthy elderly people. EEG signals in all channels was computed by auto-
regressive model and multi scale entropy(MSE) to obtain relative power spectral
density (PSD) value of each frequency band and entropy value in different time
scales. Area under Receiver operating characteristic curve (AUC) was used to
compare the classification ability of the two method. The ratio Alpha/theta of
MCI group in left frontal area can distinguish MCI from NC subjects. Also the
long scale entropy value in left frontal-central area manifests a better accuracy in
distinguish AD and MCI from NC group. In addition, the combined feature from
alpha/theta and long scale entropy in the left frontal central area can discriminate
AD from NC group with higher AUC reaching 0.89. This indicated that combined
PSD and MSE can be taken as a potential measure to detect AD in early state.

Keywords: Nonlinear, Multi-scale Entropy, Alzheimer’s Disease, Mild cogni-
tive impairment.

1 Introduction

Alzheimer’s disease is a degenerative diseases of the central nervous increasingly af-
fects the elderly people, causing loss in cognition, memory, even language function
[1].About 10-15% of MCI elderly people each year developed into AD, effective diag-
nosis and treatment for MCI is very important [2]. The clinical detection of MCI and
AD is mainly based on subjective neuropsychological test [3]. The imaging method
was used to study the brain structure changes of MCI and AD, but its specificity is not
high in the early stage of AD [4]. Also the detection based on biomarkers is invasive
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[5]. EEG can reflect the physiological activities of the brain, and because of its low-
cost, non-invasive and high time resolution, it has been widely used in clinical research
of patients with AD at the MCI stage [6].

Quantitative EEG recordings in rest state provide an ideal methodology of the rapid
detection in MCI and AD [7]. Babiloni et al [8] presented the hippocampus volume is
related to the loss of alpha rhythms in AD. Moretti et al [9] found the alpha relative
power of MCI in the frontal area was decreased, and power in theta band was increased.
Compared with traditional spectrum estimation, the parameter estimation based on AR
model performs better, it has been used to calculate PSD of EEG in MCI studies [10].

Although linear analysis is important to quantify the abnormal EEG rhythm of patients
with MCI or AD, considering the non-stationarity and randomicity of EEG signal, com-
plexity measures such as entropy were widely used to analysis EEG in AD patients.
Abasolo et al [11] showed the entropy of AD patients in the parietal area is lower than
health elderly. Hogan et al [12] found that the entropy of MCI subjects was reduced.
MSE analysis base on entropy can measure the probability of producing new infor-
mation for sequences under different scales size, it has been used in cognitive neuro-
science. Mizuno et al [13] found large scale entropy of AD patients in whole brain areas
was higher than healthy elderly. Previous studies suggested the complexity changing
of EEG signals related to cognitive impairment may be inconsistent in different time
scales.

In this work to further quantify both linear and nonlinear comprehensive abnormality
of EEG in MCI and AD patients, the PSD and MSE method was adopted to analysis
the MCI, AD and normal elderly. Then we compared the accuracy of PSD value, MSE
value and combined index in distinguishing AD and MCI from healthy elderly.

2 Subject and Experiment

2.1 Participants

Ten hospitalized AD patients from the department of neurology, JiangBin Hospital in
NanNing, GuangXi province (China), and 18 volunteers over 60 years old were re-
cruited. All subjects were right-handness, after clinical evaluation and neurological ex-
aminations, eight subjects whose MMSE score were ranged from 24 to 27 composed to
be MCI group, other subjects composed to be NC group. Table 1. gives the information
of subjects. ‘*’ means difference of MMSE in three groups was significant. The differ-
ence in age, gender and education level are not significant.

Table 1. Information of Subjects

Heading level NC(N=10)  MCI (N=R) AD(N=10) ANOVA P
Sex(female/male) 6/4 4/4 4/6 0.38
Age (years) 74.4+9.6 79.1+8.7 80.6+6.7 0.25
Education(years) 8.5£2.1 8.5+1.4 8.0+0.1 0.69

MMSE 28.9+1.2 24.6+0.7 16.9+1.5 0.00 *
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2.2  EEG recording

The data collected by the NicoletOne EEG acquisition instrument with 16 channels,
sampling rate is 250Hz. During the experiment the electrode impedance was kept under
in 5KQ, acquisition channel concludes Fpl, Fp2, F3, F4, C3, C4, P3, P4, O1, 02, F7,
F8, T3, T4, TS5, T6. Five minutes EEG signal was collected in rest state with eyes
closed. Five segment of 5 seconds which has no obvious interference in all channels
was selected for subsequent processing. EEG signal was preprocessed by 0.05-40Hz
band pass filter, all data was processed in MATLAB (R2012a).

3 Method

3.1 Power spectrum density (PSD)

PSD analysis for each segment is estimated using AR Burg method, which is one of the
most frequently used parametric method. AR model is based on modeling the data se-
quence as the output of a causal and discrete filter whose input is white noise. Thus the
AR model of order p is expressed by the difference equation. AR parameters was esti-
mated by the Burg algorithm, and the optimal order of AR model was estimated by the
final prediction error criterion (FPE). The PSD in each frequency band was normalized
to obtain the relative PSD, where the sub-band was selected as delta band in 0.5-4Hz,
theta band in 4-8Hz, alpha band in 8-13Hz and beta band in 13-30Hz. And alpha/theta
which shows the ratio of PSD in alpha band versus theta band was computed.

3.2 Multi-scale entropy (MSE)

MSE is a method which measure the complexity of a finite length time series to quantify
the probability of generating new information on different time scales. MSE method
based on sample entropy of different scales was calculated as the following steps!'3l:
Firstly, for EEG time series X, construct a coarse-grained time series Y according to a
scale factor, the length of reconstruction time series is M, in this work set m=2 to get
the new time series Ym. Secondly, quantify the sample entropy of each coarse-grained
time series, the distance between each Y, was computed. Set a threshold, r=0.25, the
number of the distance less than r was calculated as B, then obtain the average ratio of
this number to the total number of vectors. Lastly, for the next number of dimensions
m+1, repeat the above steps to obtain the sample entropy of each scale from 1 to 20.

3.3  Statistical analysis

Comparison between groups (NC and MCI, MCI and AD, NC and AD) was made using
the independent samples T-test. ROC curves was used to estimate the discriminating
ability of PSD and MSE. Area under curve (AUC) of ROC near the upper left corner
indicate diagnostic capabilities. Statistical procedures was performed using SPSS 19.0.

3
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4 Results

4.1 MSE in different scales

The sample entropy value on 1 to 20 scales in each channel of AD, MCI and NC group
was shown in “Fig. 1”. For each scale we compared the difference between AD and NC
group. The red box indicated that within this range of scales, differences was statisti-
cally significant between AD and NC group. The long scale entropy of AD group was
greater than MCI group, and the value of MCI group was greater than NC group, espe-
cially for scales more than 12, there was significant differences in each channel of the
left side brain areas.

FP1 FP2
15 15 e HC
1 1| “"u..._“-__: MCI
{)5 ] Cls i‘.}l‘... —— AD
5 10 15 20 5 10 15 20
F7 F3 F4 ]
15 15 15
W Y ]
=
0.5 0.5 0.5
5 10 15 20 51{}152-3 1{}152-3 51{:-152{:-
T3
15 15 1.5
a 1
0.5 0.5

1':)152{) 51{}152{}

5

5 10 15 20 5 10 15 20
scale factor scale factor

Fig. 1. MSE in different scales of different channel

The average entropy from 13 to 20 were computed as the long scale entropy value. The
“Fig. 2” shows the long scale entropy in left frontal, left occipital, left parietal occipital,
left temporal, right frontal, right occipital, right occipital area and right temporal areas,
differences between AD and NC group were analyzed by t test. The long scale entropy
value of AD group was greater than MCI group, and the value of MCI was greater than
NC group. Especially the difference between AD and NC group in the left frontal, left
frontal-central and left parietal-occipital areas was significant.
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Fig. 2. Alpha/Theta in different areas

4.2 PSD in different band

The average PSD value of different frequency band in each channel of the three group
was shown Table 2, ‘*’ means difference between AD and NC group was significant,

and ‘+” means difference between AD and MCI group was significant.

Table 2. PSD index of different frequency band

B o 0 8 (Bra)/(0+5) a/0
NC  0.18£0.03  041£0.05 0244002  0.16£0.04  0.72+0.34  2.9140.33
MCI  0.15£0.02* 0.40+0.06  0.28+0.02%* 0.16£0.05  0.60£0.33*  2.13£0.31*
AD  0.12+0.01"  0.3340.05"°  0.3740.02°" 0.1940.06"" 0.28+0.16" 0.95:£0.12°*

For Alpha/Theta, difference between groups on left and right side of four brain areas
were also analyzed by t test. As shown in “Fig.3”, the line means p<0.05, the difference
was significant. There was significant difference of the alpha/theta value in left frontal,
left temporal, right temporal and right parietal occipital areas. There was significant
difference of the alpha/theta value in left frontal area of MCI and NC group. And there
was significant difference of the alpha/theta value in right parietal occipital area of MCI

and AD group.

NC Bz MCI m. AD

AlphalTheta

7

2
2
Z
7
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Fig. 3. Long-scale entropy in different areas
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4.3 ROC analysis

AUC was used to assess the ability of index in discriminating AD and MCI from NC
group, the AUC of alpha/theta and long scale entropy in eight areas was computed, as
Table 3 shows, * means AUC is more than 0.7. The results indicated that the two in-
dexes in left frontal-central and occipito-parietal areas has certain accuracy in discrim-
inating AD from NC group. AUC of linear and nonlinear index in the Left Frontal-
Central area was all more than 0.7, with 0.75 and 0.81. We further combined those two
value in left frontal-central area to distinguish AD from NC group, the AUC of com-
bined index reached 0.89, which is higher than AUC from any single feature.

Table 3. AUC of Alpha/Theta and long scale entropy

AUC of Alpha/Theta AUC of Long Scale Entropy
Brain areas AD and NC MCI and NC AD and NC MCI and NC
L-Frontal 0.61 0.76* 0.77* 0.55
R-Frontal 0.68 0.56 0.80 0.54
L-FrontalCentral 0.75* 0.48 0.81* 0.73*
R-FrontalCentral 0.59 0.58 0.68 0.61
L-Temporal 0.56 0.69 0.65 0.58
R-Temporal 0.65 0.58 0.63 0.65
LOccipitoparietal 0.86* 0.55 0.74* 0.69
ROccipitoparietal 0.79* 0.74* 0.67 0.69

5 Discussion

In this study, linear and non-linear method, PSD and MSE analysis was employed to
distinguish MCI and AD patients from normal elderly. Cognitive impairment is related
to the spontaneous EEG activity rhythm, the abnormality of all the PSD index in MCI
and AD patient was consistent with the prior studies. The significant declined power of
alpha band in AD patients was indicated, and these values of MCI subjects also has a
downward trend compared with normal elderly. The alpha/theta ratio in left frontal and
right occipito-parietal areas can be a typical feature of cognitive decline, which dis-
criminated MCI from normal elderly significantly.

For MSE analysis, we determined the appropriate range of scale to obtain long scale
entropy value, the complexity abnormality of MCI patients was consistent with prior
studies. The long scale entropy in left frontal-central and ccipito-parietal areas provided
better classification performance between AD patient and normal elderly. And in left
frontal-central area it also provided good classification performance between the MCI
and NC. This manifests EEG abnormality in dominant side brain areas of AD patients
is more notable. The complexity of EEG from MSE analysis can provide more infor-
mation which may benefit our understanding of cognitive impairment.

Since the brain is a complex system showing both linear and nonlinear features, com-
bining PSD and MSE which can reflect the rhythmicity as well as complexity, to obtain
effective multiple quantitative EEG index in rest state, can be taken as a potential meas-
ure in early screen of AD.
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Abstract.

To assist effective and precise diagnosis for mild cognitive impairment(MCI) and
Alzheimer's disease(AD),Electroencephalograph(EEG) has been widely used in
clinical research of patients with AD at MCI state. To study the linear and non-
linear abnormality of EEG in AD and MCI patients, multiple characteristics was
applied to distinguish AD and MCI patients from the normal controls(NC). EEG
signals was recorded from 28 subjects, including 10 AD patients, 8 MCI subjects
and 10 healthy elderly people. EEG signals in all channels was computed by auto-
regressive model and multi scale entropy(MSE) to obtain relative power spectral
density (PSD) value of each frequency band and entropy value in different time
scales. Area under Receiver operating characteristic curve (AUC) was used to
compare the classification ability of the two method. The ratio Alpha/theta of
MCI group in left frontal area can distinguish MCI from NC subjects. Also the
long scale entropy value in left frontal-central area manifests a better accuracy in
distinguish AD and MCI from NC group. In addition, the combined feature from
alpha/theta and long scale entropy in the left frontal central area can discriminate
AD from NC group with higher AUC reaching 0.89. This indicated that combined
PSD and MSE can be taken as a potential measure to detect AD in early state.

Keywords: Nonlinear, Multi-scale Entropy, Alzheimer’s Disease, Mild cogni-
tive impairment.

1 Introduction

Alzheimer’s disease is a degenerative diseases of the central nervous increasingly af-
fects the elderly people, causing loss in cognition, memory, even language function
[1].About 10-15% of MCI elderly people each year developed into AD, effective diag-
nosis and treatment for MCI is very important [2]. The clinical detection of MCI and
AD is mainly based on subjective neuropsychological test [3]. The imaging method
was used to study the brain structure changes of MCI and AD, but its specificity is not
high in the early stage of AD [4]. Also the detection based on biomarkers is invasive
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[5]. EEG can reflect the physiological activities of the brain, and because of its low-
cost, non-invasive and high time resolution, it has been widely used in clinical research
of patients with AD at the MCI stage [6].

Quantitative EEG recordings in rest state provide an ideal methodology of the rapid
detection in MCI and AD [7]. Babiloni et al [8] presented the hippocampus volume is
related to the loss of alpha rhythms in AD. Moretti et al [9] found the alpha relative
power of MCI in the frontal area was decreased, and power in theta band was increased.
Compared with traditional spectrum estimation, the parameter estimation based on AR
model performs better, it has been used to calculate PSD of EEG in MCI studies [10].

Although linear analysis is important to quantify the abnormal EEG rhythm of patients
with MCI or AD, considering the non-stationarity and randomicity of EEG signal, com-
plexity measures such as entropy were widely used to analysis EEG in AD patients.
Abasolo et al [11] showed the entropy of AD patients in the parietal area is lower than
health elderly. Hogan et al [12] found that the entropy of MCI subjects was reduced.
MSE analysis base on entropy can measure the probability of producing new infor-
mation for sequences under different scales size, it has been used in cognitive neuro-
science. Mizuno et al [13] found large scale entropy of AD patients in whole brain areas
was higher than healthy elderly. Previous studies suggested the complexity changing
of EEG signals related to cognitive impairment may be inconsistent in different time
scales.

In this work to further quantify both linear and nonlinear comprehensive abnormality
of EEG in MCI and AD patients, the PSD and MSE method was adopted to analysis
the MCI, AD and normal elderly. Then we compared the accuracy of PSD value, MSE
value and combined index in distinguishing AD and MCI from healthy elderly.

2 Subject and Experiment

2.1 Participants

Ten hospitalized AD patients from the department of neurology, JiangBin Hospital in
NanNing, GuangXi province (China), and 18 volunteers over 60 years old were re-
cruited. All subjects were right-handness, after clinical evaluation and neurological ex-
aminations, eight subjects whose MMSE score were ranged from 24 to 27 composed to
be MCI group, other subjects composed to be NC group. Table 1. gives the information
of subjects. ‘*’ means difference of MMSE in three groups was significant. The differ-
ence in age, gender and education level are not significant.

Table 1. Information of Subjects

Heading level NC(N=10)  MCI (N=R) AD(N=10) ANOVA P
Sex(female/male) 6/4 4/4 4/6 0.38
Age (years) 74.4+9.6 79.1+8.7 80.6+6.7 0.25
Education(years) 8.5£2.1 8.5+1.4 8.0+0.1 0.69

MMSE 28.9+1.2 24.6+0.7 16.9+1.5 0.00 *
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2.2  EEG recording

The data collected by the NicoletOne EEG acquisition instrument with 16 channels,
sampling rate is 250Hz. During the experiment the electrode impedance was kept under
in 5KQ, acquisition channel concludes Fpl, Fp2, F3, F4, C3, C4, P3, P4, O1, 02, F7,
F8, T3, T4, TS5, T6. Five minutes EEG signal was collected in rest state with eyes
closed. Five segment of 5 seconds which has no obvious interference in all channels
was selected for subsequent processing. EEG signal was preprocessed by 0.05-40Hz
band pass filter, all data was processed in MATLAB (R2012a).

3 Method

3.1 Power spectrum density (PSD)

PSD analysis for each segment is estimated using AR Burg method, which is one of the
most frequently used parametric method. AR model is based on modeling the data se-
quence as the output of a causal and discrete filter whose input is white noise. Thus the
AR model of order p is expressed by the difference equation. AR parameters was esti-
mated by the Burg algorithm, and the optimal order of AR model was estimated by the
final prediction error criterion (FPE). The PSD in each frequency band was normalized
to obtain the relative PSD, where the sub-band was selected as delta band in 0.5-4Hz,
theta band in 4-8Hz, alpha band in 8-13Hz and beta band in 13-30Hz. And alpha/theta
which shows the ratio of PSD in alpha band versus theta band was computed.

3.2 Multi-scale entropy (MSE)

MSE is a method which measure the complexity of a finite length time series to quantify
the probability of generating new information on different time scales. MSE method
based on sample entropy of different scales was calculated as the following steps!'3l:
Firstly, for EEG time series X, construct a coarse-grained time series Y according to a
scale factor, the length of reconstruction time series is M, in this work set m=2 to get
the new time series Ym. Secondly, quantify the sample entropy of each coarse-grained
time series, the distance between each Y, was computed. Set a threshold, r=0.25, the
number of the distance less than r was calculated as B, then obtain the average ratio of
this number to the total number of vectors. Lastly, for the next number of dimensions
m+1, repeat the above steps to obtain the sample entropy of each scale from 1 to 20.

3.3  Statistical analysis

Comparison between groups (NC and MCI, MCI and AD, NC and AD) was made using
the independent samples T-test. ROC curves was used to estimate the discriminating
ability of PSD and MSE. Area under curve (AUC) of ROC near the upper left corner
indicate diagnostic capabilities. Statistical procedures was performed using SPSS 19.0.

3
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4 Results

4.1 MSE in different scales

The sample entropy value on 1 to 20 scales in each channel of AD, MCI and NC group
was shown in “Fig. 1”. For each scale we compared the difference between AD and NC
group. The red box indicated that within this range of scales, differences was statisti-
cally significant between AD and NC group. The long scale entropy of AD group was
greater than MCI group, and the value of MCI group was greater than NC group, espe-
cially for scales more than 12, there was significant differences in each channel of the
left side brain areas.
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Fig. 1. MSE in different scales of different channel

The average entropy from 13 to 20 were computed as the long scale entropy value. The
“Fig. 2” shows the long scale entropy in left frontal, left occipital, left parietal occipital,
left temporal, right frontal, right occipital, right occipital area and right temporal areas,
differences between AD and NC group were analyzed by t test. The long scale entropy
value of AD group was greater than MCI group, and the value of MCI was greater than
NC group. Especially the difference between AD and NC group in the left frontal, left
frontal-central and left parietal-occipital areas was significant.
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Fig. 2. Alpha/Theta in different areas

4.2 PSD in different band

The average PSD value of different frequency band in each channel of the three group
was shown Table 2, ‘*’ means difference between AD and NC group was significant,

and ‘+” means difference between AD and MCI group was significant.

Table 2. PSD index of different frequency band

B o 0 8 (Bra)/(0+5) a/0
NC  0.18£0.03  041£0.05 0244002  0.16£0.04  0.72+0.34  2.9140.33
MCI  0.15£0.02* 0.40+0.06  0.28+0.02%* 0.16£0.05  0.60£0.33*  2.13£0.31*
AD  0.12+0.01"  0.3340.05"°  0.3740.02°" 0.1940.06"" 0.28+0.16" 0.95:£0.12°*

For Alpha/Theta, difference between groups on left and right side of four brain areas
were also analyzed by t test. As shown in “Fig.3”, the line means p<0.05, the difference
was significant. There was significant difference of the alpha/theta value in left frontal,
left temporal, right temporal and right parietal occipital areas. There was significant
difference of the alpha/theta value in left frontal area of MCI and NC group. And there
was significant difference of the alpha/theta value in right parietal occipital area of MCI

and AD group.
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AlphalTheta

7

2
2
Z
7

Gni et rietd!
Lef-Er g ?Yi w,“g\ o FrOma\\c Lq Termeot "’hﬂei oaﬂp“ p Ly P2

Fig. 3. Long-scale entropy in different areas
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4.3 ROC analysis

AUC was used to assess the ability of index in discriminating AD and MCI from NC
group, the AUC of alpha/theta and long scale entropy in eight areas was computed, as
Table 3 shows, * means AUC is more than 0.7. The results indicated that the two in-
dexes in left frontal-central and occipito-parietal areas has certain accuracy in discrim-
inating AD from NC group. AUC of linear and nonlinear index in the Left Frontal-
Central area was all more than 0.7, with 0.75 and 0.81. We further combined those two
value in left frontal-central area to distinguish AD from NC group, the AUC of com-
bined index reached 0.89, which is higher than AUC from any single feature.

Table 3. AUC of Alpha/Theta and long scale entropy

AUC of Alpha/Theta AUC of Long Scale Entropy
Brain areas AD and NC MCI and NC AD and NC MCI and NC
L-Frontal 0.61 0.76* 0.77* 0.55
R-Frontal 0.68 0.56 0.80 0.54
L-FrontalCentral 0.75* 0.48 0.81* 0.73*
R-FrontalCentral 0.59 0.58 0.68 0.61
L-Temporal 0.56 0.69 0.65 0.58
R-Temporal 0.65 0.58 0.63 0.65
LOccipitoparietal 0.86* 0.55 0.74* 0.69
ROccipitoparietal 0.79* 0.74* 0.67 0.69

5 Discussion

In this study, linear and non-linear method, PSD and MSE analysis was employed to
distinguish MCI and AD patients from normal elderly. Cognitive impairment is related
to the spontaneous EEG activity rhythm, the abnormality of all the PSD index in MCI
and AD patient was consistent with the prior studies. The significant declined power of
alpha band in AD patients was indicated, and these values of MCI subjects also has a
downward trend compared with normal elderly. The alpha/theta ratio in left frontal and
right occipito-parietal areas can be a typical feature of cognitive decline, which dis-
criminated MCI from normal elderly significantly.

For MSE analysis, we determined the appropriate range of scale to obtain long scale
entropy value, the complexity abnormality of MCI patients was consistent with prior
studies. The long scale entropy in left frontal-central and ccipito-parietal areas provided
better classification performance between AD patient and normal elderly. And in left
frontal-central area it also provided good classification performance between the MCI
and NC. This manifests EEG abnormality in dominant side brain areas of AD patients
is more notable. The complexity of EEG from MSE analysis can provide more infor-
mation which may benefit our understanding of cognitive impairment.

Since the brain is a complex system showing both linear and nonlinear features, com-
bining PSD and MSE which can reflect the rhythmicity as well as complexity, to obtain
effective multiple quantitative EEG index in rest state, can be taken as a potential meas-
ure in early screen of AD.
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ABSTRACT

In this study, a steady-state motion visual evoked potential
(SSMVEP) stimulation-the square’s ring motion was proposed, and
compared with the visual stimulation which are commonly used in
BCI system (oscillatory Newton's ring, square flicker and circular
flicker) both in objective and subjective aspects. Eight healthy
subjects were asked to gaze at those four simulations. For each
stimulation, eight targets varying at different frequencies were
presented on a LCD screen. Canonical Correlation Analysis (CCA)
was used to identify SSVEPs, and subjective questionnaire was
used to measure the comfort of the stimulations. The experimental
results showed that the accuracy of the square’s ring motion was
85+13.2% which has no significant difference with the oscillatory
Newton’s ring (85.949.1%). Meanwhile the accuracy of the square
flicker was 98.144.38%, and the accuracy of the circular flicker was
99.1+1.9%. The subjective questionnaire reported that the square’s
ring motion was the most comfortable, followed by the Newton’s
ring motion, the circular flicker and the square flicker. Taken
together, these results suggest that the square’s ring motion
equaling to the newton’s ring can elicit SSVEP accurately and
reduce the discomfort caused by flickering of targets. Though there
is no obvious improvement in the accuracy of the square’s ring
motion compared with oscillatory Newton’s ring, subjective score
of the square’s ring is a bit higher than the oscillatory Newton’s
ring. Under the premise of controlling the incorrect operation, the
square’s ring motion can be used as a visual stimulation in long-
term SSMVEP-based BCI system.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User Interfaces
— evaluation/methodology, Screen design

General Terms
Performance, Design, Experimentation,

Keywords
Steady state motion visual evoked potential; Accuracy; Comfort.
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1. INTRODUCTION

Brain computer interface (BCI) is an alternative device which
facilitates human—machine interaction without dependence on any
muscle or peripheral nervous system actions [, using human
neurophysiological signals to communicate with external device
such as computers, wheelchairs [l and robots [°1. BCI systems are
most frequently based on recordings of electroencephalogram
(EEG), because of the relatively low price and portability. BCI
system based on the Steady State Visual Evoked Potentials
(SSVEP) is widely used, due to its stable waveform, obvious
spectral characteristics, and less susceptibility to blinking and
motion artifact ##A#=EAR- (516 SS\/EP-based BCI system
generally provide higher classification accuracy and information
transfer rates (ITR) [7] #RFHSEAR.

For SSVEP-based BCI system, a suitable stimulation paradigm is
very crucial. There are three kinds of visual stimulation in
previous studies. First, typical SSVEP is frequency coded, visual
targets flashing at different frequencies, where a user’s choice is
determined from the SSVEPs elicited by gazing at a specific
target, which is limited by a variety of factors, including user
comfort and safety with light stimuli flashing at specific
frequencies [°1. The second is phase coded SSVEP, the targets were
flickering at the same frequency but with different phases. Phase
coding can increase the number of available targets and
compensate the reduction of limited frequencies 11121, If a
comfortable frequency of stimulation is selected, visual fatigue
can be reduced to a certain extent. Thirdly, based on extremely
high consistency of frequency and phase observed between visual
flickering, the classification accuracy was up to 91.04% and the
information transmission rate was 267bits /min [23],

Even though SSVEP-based BCls have high recognition accuracy,
most stimulation is based on flicker which usually causes eyestrain
and directly affect the BCI system long time performance ##4#
F#:In order to overcome the problem of visual fatigue caused by
uncomfortable light twinkling and contrast changes, Xie et al.
utilized a special visual stimulation of non-direction-specific
motion reversals, adopting the Newton’s ring as the template, to
elicit the SSMVEPs for BCI applications #&EF#¥H& - Ho\ever,
SSMVEP-based BCI cannot achieve high accuracy as SSVEP-
based BCI. How to improve the accuracy under the condition of
reducing visual fatigue has become the goal of researchers.

Due to the different shapes of receptive fields in successive stages
of information processing in the visual system, one can hypothesize
that square stimuli would evoke better response than circular ones
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BRARISAR. \We suspected that changing the motion pattern from
Newton’s ring to square ring with sharper edge might increase the
classification accuracy. In this paper, we proposed a new
stimulation-the square’s ring motion for SSMVEP-based BCI
system. In addition, the new stimulation was compared with the
visual stimulation commonly used in BCI system (oscillatory
Newton's ring, square flicker and circular flicker) both in objective
and subjective aspects.

2. EXPERIMENTS AND METHODS

2.1 Stimulation

The square’s ring stimulation is a development of Newton’s ring
which can provide a comparable performance with low-adaptation
characteristic and less visual discomfort for BCI applications #**
REIRE- A square’s ring stimulator is made up of a series of
concentric black and white squares. The formula is:

E = Lyax[ Csign(cos(2 = m = % + @(i) * g)z -05)] @

In the formula, A is a constant, this article takes 0.05; d is a square
matrix of 360 * 360. The ring oscillation motion is formed

by (i):

@(i) = abs(sin (pi * 2 * (é))) (i=1, 2...60) (2)
Where, f is the stimulus frequency; i is the current frame number;
R = 60 for the screen refresh rate. When @(i) increases with i, its
phase shift from 0 to n, and then expansion motion was achieved
with phase shift from © back to 0I*%l. Fig.1 shows a square’s ring
motion reversal procedure in one stimulus period. It is illustrated
with a 12 Hz motion reversal frequency and each reversal contained
10 frames.

Phase Shiftixpi

Figure 1. Square’s ring motion reversal stimulation

What’s more, the Newton's ring motion, the square flickering and
circular flickering were selected as control.

Presentation of the stimulators and their reversals were coded by
the Psychtoolbox 3.0. Acer's 24-inch LCD monitor (60Hz-screen
refresh rate, 1920 %1080 pixels) displayed the stimulation. For the
each visual stimulation, there were eight targets flickering at 8, 9,
10, 11, 12, 13, 14 and 15Hz on a black background. There were
four kinds of visual stimulation, there were four kinds of targets,
square’s ring motion (5.5cm in side length), Newton’s Rings
motion (6.2cm in diameter), the square flick (5.5cm in side length)
and the circular flick (6.2cm in diameter).

2.2 Experimental procedure

Eight healthy right-handed adults (3 females and 5 males), aged
from 20 to 26, participated in this experiment. All subjects gave
informed consent. EEG signals were sampled at 1000 Hz
(Neuroscan, USA). Those were attached to the head locations PO3,
PQO4, PO7, POs, POz, O3, Oz, O2, and Cz. All electrode impedances
were reduced to 10kQ before data recording. Trigger events were

acquired simultaneously. Data were collected continuously and
analyzed off-line. The experiment was performed in a quiet room,
with the subjects sitting comfortably and gazing at the LCD screen
with a distance of about 70 cm.

© (D)

Figure 2.Stimulation interfaces (A) The square’s rings based
interface. (B) The Newton’s rings interface. (C) The square
based interface (D) The circle based interface.

For each subject, four experimental tasks with different
stimulations were carried out. Each task contained 40 trails. Before
the start of each trails, a red "+" symbol appears randomly at the
location of the stimulus target for a duration of 0.5 s. Then the eight
stimulators were simultaneously presented for 4 s as a single trial.
Two adjacent trials were isolated by black screen and the interval
time was fixed to 0.5 s. After 40 trails, a single task was over (see
Figure 3).

Task1 |[—» Task2 —» Task3 [—» Task4

- S~
P -
-7 g T~ =<
- 40 trails ;‘ ~
Black Gaz.ing Stimulation Black Gaz'ing Stimulation End
screen | point screen | point . .
Time in s
| | | | | | ] >
0 0.5 4.5 5 55 9.5 200

Figure 3. The timing of the experimental sequence

2.3 EEG data processing

Band-passed filter between 3 and 40 Hz and digital notch filter from
48Hz to 52Hz were used to remove artifacts and power line
interface when acquiring EEG signals. Then the segmented EEG
signals were superposition averaged and spectral analyzed. After
determining four visual modes can effectively induce SSVEP,
Canonical correlation coefficients (CCA) was implanted for off-
line target classification [1O1#@AHBRR.

CCA is a statistical method for measuring the linear relationship
between two sets of multivariate data. In the CCA-based SSVEP
analysis, X=(x1, x,, ... x,) is assigned as the set of the multi-
channel EEG signals, and Y; refers to the set of reference signals
which have the same length as X. The reference signals Y; is set as



sin(2z- f; - t)
(COS(Z}T' fi- t)]
_ . -1 m
vo={ b=t ®
| sin@z kf; - 1) |
cos2x kf - t))
Where k is the number of harmonics, which is dependent on how

many frequency harmonics existed in SSVEP. The f; is the
sampling rate, and m is sample points. By calculating:

T
EW{ XY wy,)

4)

pi =
J E(WT XXTW,)E(Wy ;Y Wy,)

By calculating correlation coefficient p; can be obtained, and i
corresponding to the maximum is the focused target ¥&H#aRER.
The accuracy of classification of the four stimulation was
calculated from eight subjects.

2.4 Subjective Evaluation

At the end of each task, subject was asked to fill out a questionnaire
in order to find out how comfortable they were. They had to give a
score between 1 (not) and 7 (very) for each of the following four
questions after gazing at each of the stimulation in turn #&+&as3
*e .

* How much do you like this stimulation?
* How much will this stimulation increase your tiredness?
* How long could you look at this stimulation?

* How annoying is this stimulation?

3. RESULT
3.1 Different visual modes SSVEP spectrum

analysis

As for spectrum analysis of EEG signals results, one or two peaks
were found in eliciting fundamental frequency or harmonic
frequency. The amplitude of the spectrum peak of the square’s ring
motion and Newton's ring motion were smaller than that of the
square flicker and the circular flicker. Fig. 4 showed the spectrum
amplitude of channel PO4 while S7 gazing at visual stimulations
flickering at 14Hz.
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Figure 4.SSVEP spectrum amplitude of S7 elicited by 14 Hz

3.2 Accuracy of different visual stimulations

Fig.5 showed the CCA classification accuracy of four kinds of
stimulations. The result indicated that the accuracy of the
square’s ring motion and Newton's ring were similar to each other,
and were lower than that of the square flicker and the circular
flicker. Double factor variance analyzed that there was a significant
difference (p = 0.0000 <<0.05) between motion mode and flicker

mode, but no significant difference between square and circular
mode (p=0.947 > 0.05). In addition, there was no interaction
between the two elements (mode and shape).

3.3 Subjective evaluation of different visual

stimulations

As shown in Fig.6, the eight subjects' comfort scores of four visual
stimulations. The order of the score from high to the end was the
square’s ring motion, the newton’s ring motion, the circular flicker
and the square flicker. The Square’s ring seemed to have less
negative effect on subjects’ comfort than other three stimulations.

El Square's ring motion
Bl Newton's ring motion

Square flick
Circular flick

1004] ] [] ] [ 1111

Accuracy(%)
(=]
e

60+
8 9 10 11 12 13 14 15
Frequency(Hz)
Figure 5. SSVEP recognition accuracy of different
stimulations
8-
Bl Square's ring motion Square flicker
B Newton's ring motion Circular flicker
64
t
0
E4 T 1
0
0
2
0-
Figure 6. Subjective comfort evaluation of different

stimulations.

4. DISCUSSION

In this paper, a steady-state motion visual evoked potential
(SSMVEP) stimulation-the square’s ring motion was proposed, and
compared with the visual stimulation which are commonly used in
BCI system (oscillatory Newton's ring, square flicker and circular
flicker) both in objective and subjective aspects. From the
frequency spectrum of electroencephalogram, the square’s ring
motion can effectively induce SSVEP as same as other three
stimulations. Similar to Newton’s ring, the amplitude of square’s
ring motion spectrum amplitude was smaller than that of the square
flicker and the circular flicker.

According to result of CCA, the accuracy of SSVEP elicited by
motion mode is lower than that of flicker mode. Although the
average brightness of motion mode and flicker mode was the same,



but the change of the former was more obvious than the latter.
There is a positive correlation between the SSVEP response and the
change of brightness[?4l. Therefore, the classification algorithm had
lower recognition correct rate in the motion mode, compared with
the flicker mode. In the meantime, the accuracy shows that equally
with flicker mode, shape did not significantly affect motion mode
accuracy® 261, What’s more, we selected eight frequencies to
compare effects of stimulation frequency on the efficiency of
stimulation paradigms. The results demonstrated that the square’s
ring had higher accuracy at some frequencies (8, 12, 13, 15Hz) than
the Newton’s ring. The subjective comfort indicated that motion
mode has higher comfort scores than the flicker mode

As a SSVEP-BCI stimulation paradigm, motion mode can
effectively reduce the discomfort of the subjects because of its low
contrast stimulus, but it also causes a certain loss of accuracy. If we
can effectively control the erroneous operation of the BCI system,
motion mode can be used as a visual stimulation for a long term.
Admitting that the accuracy is not significantly improved by the
square’ ring motion in comparison with the Newton’s ring, the
comfort is slightly improved. Further studies will focus on the
enhancing accuracy of the square’s ring motion and improving its
applicability in BCI system.
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