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Hippocampal subfield volumetry in 
patients with subcortical vascular 
mild cognitive impairment
Xinwei Li1, Deyu Li1, Qiongling Li1, Yuxia Li3,4, Kuncheng Li5, Shuyu Li1 & Ying Han2,3

Memory impairment is a typical characteristic of patients with subcortical vascular mild cognitive 
impairment (svMCI) or with amnestic mild cognitive impairment (aMCI). The hippocampus, which plays 
an important role in the consolidation of information from short-term memory to long-term memory, 
is a heterogeneous structure that consists of several anatomically and functionally distinct subfields. 
However, whether distinct hippocampal subfields are differentially and selectively affected by svMCI 
pathology and whether these abnormal changes in hippocampal subfields are different between svMCI 
and aMCI patients are largely unknown. A total of 26 svMCI patients, 26 aMCI patients and 26 healthy 
controls matched according to age, gender and years of education were enrolled in this study. We 
utilized an automated hippocampal subfield segmentation method provided by FreeSurfer to estimate 
the volume of several hippocampal subfields, including the cornu ammonis (CA) areas, the dentate 
gyrus (DG), the subiculum and the presubiculum. Compared with controls, the left subiculum and 
presubiculum and the right CA4/DG displayed significant atrophy in patients with svMCI. Interestingly, 
we also found significant differences in the volume of the right CA1 between the svMCI and aMCI 
groups. Taken together, our results reveal region-specific vulnerability of hippocampal subfields to 
svMCI pathology and identify distinct hippocampal subfield atrophy patterns between svMCI and aMCI 
patients.

Vascular dementia (VaD) and Alzheimer’s disease (AD) are regarded as the most common forms of dementia in 
the elderly. Subcortical VaD (SVaD) is a small vessel disease1, which constitutes approximately half of all cases 
of VaD2. SVaD is characterized by multiple lacunar infarcts and ischemic white matter hyperintensity (WMH)3. 
Similar to amnestic mild cognitive impairment (aMCI), which is thought to represent a transitional state between 
normal aging and AD, subcortical vascular mild cognitive impairment (svMCI) refers to a prodromal stage of 
SVaD4. The early diagnosis of svMCI may be clinically important because it is potentially reversible by modifying 
the vascular risk factors5,6.

Memory deficit is an important characteristic of AD and is also observed in subcortical vascular disease, 
although to a lesser extent compared with AD7,8. The hippocampus plays an important role in memory process-
ing. Hippocampal atrophy has been found in patients with aMCI/AD and is widely considered a neuroimaging 
hallmark for the early diagnosis of AD9. A reduced size of the hippocampus has also been reported in svMCI and 
SVaD patients10–13. Moreover, the extent of hippocampal atrophy has shown a strong association with cognitive 
decline in subcortical ischemic vascular disease14,15.

Notably, the hippocampus is not a homogeneous structure but rather is composed of several subfields, specif-
ically the cornu ammonis (CA) areas 1–4, the dentate gyrus (DG), the subiculum and the presubiculum16. These 
subfields have distinct histological characteristics and appear to be differentially affected by various neurode-
generative diseases17. An autopsy study found substantial neuronal loss in the CA1 and the subiculum in VaD 
patients with microvascular pathology18. Recently, studies employing a three-dimensional surface mapping tech-
nique have reported deformations of hippocampal shape in the lateral body (CA1) among svMCI patients, and 
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these deformations extended to the lateral head (CA1) and the inferior body (subiculum) in SVaD patients10,11. 
Hippocampal subfield volumetry could provide accurate volumetric measures of all subfields within the hip-
pocampus regardless of surface changes. Although volumetric measurement at the level of hippocampal subfields 
has proven to be a technological challenge due to their small size, complex shape, and considerable anatomical 
variability19, some automated segmentations of the hippocampal subfields have recently been developed and 
established to be effective20,21. The method developed by Van Leemput et al.21, which has been implemented in 
the public software FreeSurfer, was based on a Bayesian modeling approach to label the hippocampal subfields. 
An analysis of hippocampal subfield volumes using FreeSurfer has been successfully applied in many neuropsy-
chiatric diseases22–25. However, whether the volumes of various hippocampal subfields in svMCI patients display 
distinct changes (i.e., heterogeneity) relative to their respective volumes in normal controls is largely unknown.

SVaD/svMCI may not be easily clinically discriminated from AD/aMCI because the clinical symptoms and the 
neuroimaging features of these two types of dementia overlap26,27. For example, WMH disruptions on MR images 
are required to diagnose SVaD/svMCI28, although this abnormality has also been observed in AD patients29. 
Additionally, hippocampal atrophy, an important biomarker of AD, has also been detected in SVaD patients12,13. 
However, the etiologies of svMCI and aMCI are different27, as svMCI is caused by small vessel abnormalities1 and 
aMCI results from neurodegenerative changes30. The distinct pathophysiological mechanism underlying each 
type of dementia could produce different abnormal patterns of the hippocampal subfields, and such evidence 
would be helpful for discriminating between these two types of dementia at an early stage.

The purposes of the present study were to 1) investigate whether hippocampal subfields in svMCI patients dis-
play different patterns of atrophy from those in normally aging subjects and 2) compare the patterns of hippocam-
pal atrophy between svMCI and aMCI patients. We first performed segmentation of the hippocampal subfields 
using a fully automated method provided by FreeSurfer21; then, we statistically compared the subfield volumes 
between the groups. As mentioned above, the hippocampal subfields have distinct histological characteristics and 
appear to be differentially affected by various neurodegenerative diseases17; thus, we expected to observe different 
patterns of atrophy in the hippocampal subfields of svMCI patients compared with normal control (NC) subjects 
and with aMCI patients.

Results
Demographic data.  Table 1 shows the demographic data of the controls, the patients with svMCI, and the 
patients with aMCI. The three groups were well matched in terms of sex. There was no significant difference in age 
(F(2,75) =  0.269, p =  0.765) or years of education (F(2,75) =  0.513, p =  0.601) between the groups. Additionally, 
the number of vascular risk factors was significantly fewer (p <  0.005 based on Bonferroni post hoc analysis) in 
both the NC and aMCI groups compared to the svMCI group. Furthermore, significant differences in the occur-
rence of arterial hypertension (χ2 =  9.199, p =  0.010), diabetes mellitus (χ2 =  10.123, p =  0.006), and heart dis-
ease (χ2 =  14.679, p =  0.001) were found between the three study groups. Post hoc tests revealed that the NC 
group exhibited lower rates of arterial hypertension and heart disease than the svMCI group and that the aMCI 
group displayed lower rates of diabetes mellitus and heart disease than the svMCI group. Moreover, as deter-
mined by one-way analysis of variance (ANOVA), between-group differences in the Mini Mental Status 
Examination (MMSE) (F(2,75) =  8.473, p <  0.001), Clock Drawing Test (CDT) (F(2,75) =  5.704, p =  0.005), 
Auditory Verbal Learning Test (AVLT)-immediate recall (F(2,75) =  28.551, p <  0.001), AVLT-delayed recall 
(F(2,75) =  22.642, p <  0.001) and AVLT-recognition scores (F(2,75) =  7.812, p  = 0.001) were observed. Post hoc 

NC (n = 26) svMCI (n = 26) aMCI (n = 26)

Gender (M/F) 11/15 11/15 11/15

Age (years) 65.4 ±  8.1 (43–79) 67.0 ±  9.9 (46–79) 65.7 ±  7.1 (52–79)

Years of education 10.3 ±  4.1 (0–17) 10.3 ±  4.2 (0–18) 9.8 ±  5.0 (0–21)

Number of vascular risk 
factors 0.9 ±  1.2 (0–4) 2.0 ±  0.9 (0–4)* 0.8 ±  0.9 (0–3)+

Arterial hypertension, N (%) 8 (26) 18 (69)* 11 (42)

Diabetes mellitus, N (%) 7 (27) 13 (50) 3 (12)+

Hypercholesterolemia, N (%) 5 (19) 6 (23) 6 (23)

Heart disease, N (%) 3 (12) 11 (42)* 1 (4)+

CDR 0 0.5 0.5

MMSE 27.9 ±  2.4 (20–30) 25.9 ±  2.4 (21–30)* 24.9 ±  3.3 (18–30)*

CDT 2.8 ±  0.5 (1–3) 2.3 ±  0.8 (1–3)* 2.2 ±  0.8 (0–3)*

AVLT-immediate recall 8.9 ±  2.0 (5.0–14.7) 5.4 ±  2.1 (3.3–9.7)* 5.7 ±  1.4 (3.0–8.0)*

AVLT-delayed recall 9.7 ±  2.6 (5–15) 5.7 ±  3.3 (0–12)* 4.8 ±  2.6 (0–10)*

AVLT-recognition 11.9 ±  2.2 (7–15) 9.5 ±  3.3 (4–14)* 8.4 ±  3.8 (1–14)*

Table 1.   Demographic characteristics of the participants (means ± standard deviation, (range)). 
*,+ANOVA followed by Bonferroni post hoc analysis for continuous variables or the Chi-square test for 
categorical variables: *p <  0.05 between NC and svMCI or aMCI; +p <  0.05 between svMCI and aMCI. 
n =  number of subjects; NC, normal control group; svMCI, subcortical vascular mild cognitive impairment 
group; aMCI, amnestic mild cognitive impairment group; CDR, Clinical Dementia Rating; MMSE, Mini Mental 
Status Examination; CDT, Clock Drawing Test; AVLT, Auditory Verbal Learning Test.
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analysis revealed that all of these neuropsychological test scores were significantly lower in both the svMCI and 
aMCI groups than in the NC group (p <  0.05). However, these test scores were not significantly different between 
the svMCI and aMCI groups (p >  0.05).

Comparisons of hippocampal subfield volumes.  Figure 1 illustrates the subfield segmentation results 
for one of the participants in the current study. The statistical results of the hippocampal subfields and the total 
hippocampal volumes are shown in Table 2. The volume of the hippocampus in the svMCI patients tended to be 
intermediate between the aMCI patients and the NC subjects. The volumetric differences between the groups are 
illustrated in Fig. 2. Based on post hoc analysis, we found a significant decrease in the volume of the left hippocam-
pus in aMCI patients (p =  0.020) as well as svMCI patients (p =  0.043) and in volume of the right hippocampus 
of aMCI patients (p =  0.007) compared with NC subjects. However, no significant difference in the bilateral hip-
pocampal volume was detected between the aMCI and svMCI groups (p >  0.05). In the subfield volumetric anal-
yses, we found significant reductions in the volume of the left subiculum (p =  0.036), presubiculum (p =  0.024) 
and the right CA4/DG (p =  0.038) in the svMCI group compared with the NC group. However, we observed 
additional hippocampal subfields displaying further volumetric atrophy in the aMCI patients than in the NC 
subjects: the bilateral subiculum (left: p = 0.005; right: p =  0.012), the left presubiculum (p = 0.009), the right CA1 
(p =  0.030), and the CA4/DG (p =  0.017). Interestingly, we also detected a significant difference in the volume of 
the right CA1 between the svMCI and aMCI groups (p =  0.033).

Discussion
In this study, we found that hippocampal subfields were differentially and selectively affected by svMCI pathology. 
Specifically, svMCI patients showed significantly reduced hippocampal subfield volumes in the left subiculum, 
the presubiculum and the right CA4/DG relative to healthy control subjects. Additionally, different hippocampal 
atrophy patterns were observed between svMCI patients and aMCI patients; the aMCI patients showed more 
extensive hippocampal subfield atrophy than the svMCI patients.

Hippocampal atrophy in svMCI/SVaD patients had been found in several previous neuroimaging stud-
ies11,12,14. Cortical hypometabolism and hypoperfusion, which occur in SVaD patients, could contribute to hip-
pocampal and cortical atrophy31. Furthermore, experiments using animal models of ischemia demonstrated that 

Figure 1.  Hippocampal subfield segmentation. A coronal view (top) and a sagittal view (bottom) are shown.

Left Right

NC svMCI aMCI NC svMCI aMCI

CA1 321 ±  51 304 ±  41 314 ±  52 336 ±  46 335 ±  45 307 ±  45*,+

CA2/3 911 ±  130 855 ±  138 855 ±  163 986 ±  110 929 ±  121 904 ±  160

CA4/DG 519 ±  68 486 ±  72 479 ±  94 635 ±  80 594 ±  102* 559 ±  117*

Subiculum 630 ±  87 573 ±  98* 549 ±  108* 563 ±  60 527 ±  66 508 ±  96*

Presubiculum 450 ±  81 400 ±  74* 387 ±  79* 425 ±  68 387 ±  71 384 ±  75

Hippocampus 3300 ±  407 3050 ±  439* 2983 ±  527* 3428 ±  365 3217 ±  389 3079 ±  539*

Table 2.   Volumes of the hippocampal subfields and the total hippocampus (means ± standard deviation, 
mm3). *,+ANOVA followed by Bonferroni post hoc analysis: *p <  0.05 between NC and svMCI or aMCI; 
+p <  0.05 between svMCI and aMCI. NC, normal control group; svMCI, subcortical vascular mild cognitive 
impairment group; aMCI, amnestic mild cognitive impairment group; CA, cornu ammonis; DG, dentate gyrus.
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reducing cerebral blood flow causes memory and behavioral impairments and neuronal loss in the hippocampus, 
the striatum, and the cerebral cortex31. Moreover, the hippocampus was demonstrated to be one of the most 
vulnerable structures to brain ischemia; thus, hippocampal volume loss may be attributed to delayed neuronal 
death caused by chronic ischemia32. Additionally, hippocampal damage might indirectly result from disrupted 
connections of the hippocampus with cortical areas, and these disruptions could lead to secondary degeneration 
of hippocampal neurons14.

We observed a volumetric reduction in the left subiculum in svMCI patients. In line with this finding, an 
autopsy study of patients with SVaD reported significant atrophy and neuronal loss in grey matter regions of the 
subiculum18. Similarly, a recent study reported that the shape of the subiculum was deformed in patients with 
SVaD based on a surface mapping method10. Atrophy of the subiculum in svMCI/SVaD could be explained by 
increased glucocorticoid density33 compared with other subregions34,35 because a previous animal study demon-
strated that glucocorticoid signaling can exacerbate ischemic injury (one type of vascular pathology) to neurons 
in the rat brain36. Additionally, VaD patients showed altered activity in the hypothalamic-pituitary-adrenal axis37. 
We speculate that this alteration could be caused by a reduction in the volume of the subiculum because the 
ventral subiculum is involved in inhibiting hypothalamic-pituitary-adrenal axis activity38. Moreover, the dorsal 
subiculum plays a role in information processing functions, including memory functions38, and loss of volume in 
the subiculum may account for memory dysfunction in svMCI patients.

Another finding was a loss of volume in the left presubiculum in svMCI patients. The presubiculum serves as 
a relay station in the hippocampal neuronal circuitry39 and receives input from several cortical areas. Therefore, 
pathology affecting the presubiculum in svMCI patients disturbs the flow of information through hippocampal 
neural circuits, resulting in disrupted connections of the hippocampus with multiple cortical regions40. As the 
entire hippocampal neuronal circuit plays a crucial role in maintaining memory functions, malfunction of the 
presubiculum subregion may underlie memory impairment and associated symptoms in patients with svMCI.

Significant atrophy of the right CA4/DG subfield was also observed in svMCI patients. A previous study of the 
gerbil hippocampus showed that the CA4 region was extremely susceptible to ischemic insults but that the DG 
region showed ischemic damage only after a long-term ischemic insult41. Additionally, the subgranular zone of 
the DG is among the few regions of the adult mammalian brain in which newborn granule neurons are generated 
throughout life42,43. Animal experiments demonstrated that although ischemia can stimulate neurogenesis44, the 
self-repair potential of the adult mammalian brain is insufficient because the majority of newly generated cells die 
over time in an ischemic microenvironment45,46. This evidence may explain the DG abnormality found in svMCI 
patients in this study.

We did not observe any significant difference in the CA1 subregion volume between the svMCI group and the 
control group, and this observation was compatible with the finding in a previous study that the neuronal count 
in the CA1 subregion was unchanged in ischemic VaD patients compared to control subjects47. However, the 
CA1 subfield of the gerbil hippocampus appears to be vulnerable to anoxic-ischemic insults41. Significant atrophy 
and neuronal loss of the CA1 region were found in an autopsy study of patients with microvascular pathology18. 
Moreover, a recent study revealed a in the shape of the lateral body (CA1) region in svMCI patients based on a 3D 
surface mapping technique11. Notably, those results are not directly comparable to our results, as the shape-based 
method indirectly reflects the localized volume loss in the hippocampus by detecting the deformed surface 
boundaries of the hippocampus. Additionally, the definition of each hippocampal subfield might be different, as 
suggested by Hanseeuw et al48. Specifically, according to segmentation using FreeSurfer, the CA1 area is a small 

Figure 2.  Between-group comparisons of hippocampal volumetric measurements. ANOVA followed by 
Bonferroni post hoc analysis was performed (*p <  0.05; **p <  0.01). NC, normal controls; svMCI, subcortical 
vascular mild cognitive impairment; aMCI, amnestic mild cognitive impairment; CA, cornu ammonis; DG, 
dentate gyrus.
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region relative to other hippocampal subfields (as shown in Table 2), whereas the CA1 area is one of the largest 
subfields according to anatomic atlases16. Thus, the CA1 results in our study should be interpreted with caution.

We also found that hippocampal atrophy in the svMCI group was more lateralized towards the left hemisphere 
(i.e., significant volume reductions were found in the entire hippocampus, particularly in the left subiculum and 
presubiculum and in the right CA4/DG). There exists hippocampal asymmetry in healthy adults, in which the 
left hippocampus has a smaller volume than the right hippocampus49. We speculated that the left hippocampus 
was more vulnerable to vascular pathology than the right hippocampus due to its naturally smaller volume. 
Comparably, a previous study reported that patients with svMCI had a smaller shape in the left anterior hip-
pocampus and that patients with moderate-to-severe subcortical vascular cognitive impairment had a smaller 
shape in the bilateral anterior hippocampus50. Their results may indicate that the left hippocampus was the first 
region affected by subcortical vascular pathology, followed by atrophy in the right hippocampus with disease 
progression.

Our results indicated that patients with svMCI had less hippocampal atrophy than patients with aMCI, 
although the two groups exhibited similar cognitive impairment (no significant difference in MMSE scores 
between the groups). These findings are comparable with those of previous studies, which reported that hip-
pocampal atrophy in SVaD was milder than that in AD10,12. Specifically, we found a significantly smaller right 
CA1 in aMCI patients than in svMCI patients. Significant atrophy of the subiculum was detected exclusively in 
the left hippocampus of svMCI patients but was observed bilaterally in aMCI patients. The CA1 and subicular 
subregions were demonstrated to be the earliest regions affected by neurofibrillary tangle-related lesion devel-
opment in AD pathology51. Additionally, the authors of a recent study speculated that the subiculum is more 
vulnerable to AD pathology than vascular pathology10. Our findings are also supported by a previous pathology 
study that reported less atrophy of the CA1 and the subiculum in SVaD patients than in AD patients18. The differ-
ent hippocampal atrophy patterns may be associated with the distinct severities of memory disturbances between 
patients with svMCI and aMCI. Further studies exploring the relationship between differences in hippocampal 
subfield volumes and the distinct pathophysiological mechanisms underlying each type of dementia (microvas-
cular vs. neurodegenerative) are needed.

Several issues related to this study must be mentioned. First, one critical limitation of this study is that we 
could not completely discriminate between mixed AD and vascular pathology according to our inclusion cri-
terion (i.e., patients with clinically diagnosed svMCI may harbor AD pathology). The recently developed 
11C-Pittsburg compound-B positron emission tomography technique may partially exclude those harboring AD 
pathology52. This technique could be used in our future research. Second, the definitions of the hippocampal 
subfield boundaries obtained using FreeSurfer may be different from those obtained by other research groups. 
Thus, caution is needed in comparing our results with the findings of other studies. However, the hippocampal 
subfield segmentation method provided by FreeSurfer was validated against manual segmentation and achieved 
reasonable Dice index values (approximately 0.7) for all large hippocampal subfields21. The reproducibility of this 
method was confirmed based on the similar hippocampal subfield atrophy patterns among various studies of 
patients with aMCI48 and AD24. Finally, svMCI can be classified into various subtypes according to its progressive 
clinical trajectory (i.e., some svMCI patients progress to SVaD, but others do not). It would be interesting to lon-
gitudinally examine the distinct changes in hippocampal subfield volumes in svMCI subgroups in future studies.

In conclusion, we found hippocampal subfield volume reductions in the left subiculum and presubiculum and 
in the right CA4/DG in patients with svMCI compared to control subjects. Additionally, we observed that hip-
pocampal atrophy was less severe in patients with svMCI than in those with aMCI. These findings help to increase 
our understanding of svMCI pathology and to more effectively distinguish between svMCI and aMCI in patients.

Methods
Participants.  Patients with svMCI and aMCI were recruited from September 2009 to October 2011 through 
the memory clinic of the neurology department of Xuanwu Hospital, Capital Medical University, Beijing, China. 
All patients were diagnosed by two experienced neurologists. The patients were diagnosed with svMCI using 
the Petersen criteria53 with the following modifications that were previously described54: i) subjective cognitive 
complaint reported by the participant, preferably confirmed by his/her caregiver; ii) objective cognitive decline 
below 1.5 SD of the age- and education-adjusted norms on neuropsychological tests; iii) normal or near-normal 
performance of general cognitive function as assessed by the MMSE (MMSE score ≥ 24 for middle school-edu-
cated, ≥ 20 for primary school-educated, and ≥ 17 for illiterate participants)55 and no or minimal impairments 
in activities of daily living (ADL) as assessed by both the ADL scale (ADL score < 26) and an interview with a 
clinician; iv) a CDR score =  0.5; v) not demented according to the Diagnostic and Statistical Manual of Mental 
Disorders, 4th edition, revised (DSM-IV) criteria; vi) at least one region displaying moderate to severe WMH 
(Wahlund rating scale score56 ≥ 2) and/or multiple lacunar infarcts in the periventricular and deep white matter 
(Wahlund rating scale score ≥ 2; diameter < 15 mm). A lacuna was defined as a small lesion with high signal 
intensity on T2-weighted images or a perilesional halo on FLAIR images; and vii) focal neurological symptoms 
or signs observed in a general or neurological examination or reported by the participant or his/her caregiver. 
Additionally, all aMCI patients fulfilled the Petersen criteria53 with the following modifications: i) subjective 
memory complaint reported by the participant, preferably confirmed by his/her caregiver; ii) objective memory 
decline below 1.5 SD of the age- and education-adjusted norms on memory-related neuropsychological tests; iii) 
no or very mild white matter changes or brain infarcts on T2/FLAIR images; and iv) the same diagnostic criteria 
as iii)-v) in the above list for svMCI. Patients were excluded if they exhibited any of the following clinical charac-
teristics: i) severe depressive symptoms based on a Hamilton Depression Rating Scale score57 > 24; ii) cognitive 
impairments caused by psychiatric disease, systemic disease (e.g., thyroid dysfunction, severe anemia, syphilis 
or HIV), non-MCI neurological disorders, or alcohol or drug abuse; or iii) visual abnormalities, severe apha-
sia or motor disorders that would render neuropsychological testing infeasible. According to the inclusion and 



www.nature.com/scientificreports/

6Scientific Reports | 6:20873 | DOI: 10.1038/srep20873

exclusion criteria, 26 patients were diagnosed with svMCI, and 37 patients were diagnosed with aMCI. Fifty-five 
NC subjects were recruited from the local community using advertisements. Those subjects were screened using 
the Structured Interview for DSM-IV, Non-Patient Edition, to confirm that they had no history of any neurolog-
ical or psychiatric disorders.

Then, we randomly selected 26 aMCI patients and 26 NC subjects who matched the svMCI patients according 
to age, gender and years of education. All participants underwent a standardized clinical evaluation protocol, 
which included general and neurological examinations, a global cognitive functioning test (i.e., CDR and MMSE) 
and other cognitive assessments (i.e., ADL, CDT and AVLT). We analyzed the patients’ clinical records to record 
the number of vascular risk factors (i.e., arterial hypertension, diabetes mellitus, hypercholesterolemia and heart 
disease) for each participant. The detailed demographic characteristics of the participants are shown in Table 1.

This study was approved by the medical research ethics committee and the institutional review board of 
Xuanwu Hospital, Capital Medical University, Beijing, China. The study was conducted in accordance with the 
approved guidelines. Written informed consent was obtained from all participants.

Data acquisition.  MR imaging was performed using a 3.0 T Siemens scanner at Xuanwu Hospital, Capital 
Medical University. Structural images were acquired using a sagittal magnetization-prepared rapid gradient 
echo (MP-RAGE) three-dimensional T1-weighted imaging sequence: repetition time (TR) =  1900 ms; echo time 
(TE) =  2.2 ms; inversion time =  900 ms; flip angle =  9°; field of view (FOV) =  256 mm ×  256 mm; matrix =  256 
×  256; 176 slices; and slice thickness =  1.0 mm.

Image processing.  Structural MR images were processed using the FreeSurfer image analysis suite, which 
can be freely downloaded from a web site (version 5.3.0, http://freesurfer.net/). First, the entire hippocampal for-
mation was segmented using the routine volumetric FreeSurfer pipeline. Briefly, T1-weighted MR images were 
corrected for within-subject head motion; then, non-brain tissues were removed using a hybrid watershed/surface 
deformation algorithm58. The resulting images were further affine registered to the Talairach space. Subsequently, 
segmentation of the subcortical and cortical structures (including the hippocampus) was conducted using a prob-
abilistic brain atlas59. The estimated total intracranial volume (eTIV) of each subject was also calculated using the 
standard FreeSurfer processing pipeline by exploiting the relationship between the intracranial volume and the 
linear transformation to the atlas template60. The eTIV was used to correct for individual differences in head size 
in the subsequent statistical analysis.

Automated segmentation of hippocampal subfields was performed using a built-in module of FreeSurfer, 
in which a Bayesian statistical model with Markov random field priors was used to estimate the label of each 
subfield21. This method has been successfully applied to detect hippocampal abnormalities in specific subfields 
in many neuropsychiatric diseases22–25. A bounding box containing the hippocampus that was upsampled to a 
0.5 mm isotropic resolution was applied to this module. This approach relied on a tetrahedral mesh-based prob-
abilistic atlas of the hippocampal formation, which was constructed from the manual delineation of the right 
hippocampus based on ultra-high-resolution T1-weighted scans (0.38 ×  0.38 ×  0.8 mm3) of 10 normal subjects. 
By maximizing the posterior probability of a segmentation, the left and right hippocampi were automatically 
segmented into seven subfields: CA1, CA2/3, CA4/DG, subiculum, presubiculum, fimbria and hippocampal fis-
sure. The hippocampal subfield segmentation results are illustrated in Fig. 1. The entire hippocampal volume was 
defined as the sum of the volume of all hippocampal subfields. We disregarded the fimbria and the hippocampal 
fissure in the subsequent analysis because the segmentation of these two small subfields has been shown to be 
inaccurate (Dice index values of 0.51 and 0.53, respectively), as reported by Kühn, S. et al23.

Statistical analysis.  Statistical analysis was conducted using Statistical Package for Social Sciences (SPSS, 
version 20.0) software. All statistical tests were two-tailed. Continuous demographic variables were evaluated via 
ANOVA. Statistically significant differences based on ANOVA (p <  0.05) were further explored using Bonferroni 
post hoc analysis. Moreover, categorical demographic variables were evaluated using the Chi-square test. 
Additionally, correlation analyses were performed to examine the relationships between hippocampal subfield 
volumes and eTIV/age. No significant correlations were found between these parameters. Therefore, ANOVA was 
performed to evaluate the differences in the entire hippocampal volume and in hippocampal subfield volumes 
between groups, considering group (i.e., svMCI, aMCI and NC) as a fixed factor. If a significant effect of group 
was found (p <  0.05), post hoc analysis using Bonferroni’s method was implemented for pairwise comparisons. 
ANOVA was separately performed for the left and right hemispheres.
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